A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans.
نویسندگان
چکیده
The specification of body pattern along the anteroposterior (A/P) body axis is achieved largely by the actions of conserved clusters of Hox genes. Limiting expression of these genes to localized regional domains and controlling the precise patterns of expression within those domains is critically important for normal patterning. Here we report that egl-20, a C. elegans gene required to activate expression of the Hox gene mab-5 in the migratory neuroblast QL, encodes a member of the Wnt family of secreted glycoproteins. We have found that a second Wnt pathway gene, bar-1, which encodes a beta-catenin/Armadillo-like protein, is also required for activation of mab-5 expression in QL. In addition, we describe the gene pry-1, which is required to limit expression of the Hox genes lin-39, mab-5 and egl-5 to their correct local domains. We find that egl-20, pry-1 and bar-1 all function in a linear genetic pathway with conserved Wnt signaling components, suggesting that a conserved Wnt pathway activates expression of mab-5 in the migratory neuroblast QL. Moreover, we find that members of this Wnt signaling system play a major role in both the general and fine-scale control of Hox gene expression in other cell types along the A/P axis.
منابع مشابه
Feedback Control of Gene Expression Variability in the Caenorhabditis elegans Wnt Pathway
Variability in gene expression contributes to phenotypic heterogeneity even in isogenic populations. Here, we used the stereotyped, Wnt signaling-dependent development of the Caenorhabditis elegans Q neuroblast to probe endogenous mechanisms that control gene expression variability. We found that the key Hox gene that orients Q neuroblast migration exhibits increased gene expression variability...
متن کاملThe Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration.
During Caenorhabditis elegans development, the HSN neurons and the right Q neuroblast and its descendants undergo long-range anteriorly directed migrations. Both of these migrations require EGL-20, a C. elegans Wnt homolog. Through a canonical Wnt signaling pathway, EGL-20/Wnt transcriptionally activates the Hox gene mab-5 in the left Q neuroblast and its descendants, causing the cells to migra...
متن کاملEGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans.
Mutations in the C. elegans gene egl-27 cause defects in cell polarity and cell migration: the polarity of the asymmetric T cell division is disrupted and the descendants of the migratory QL neuroblast migrate incorrectly because they fail to express the Hox gene mab-5. Both of these processes are known to be controlled by Wnt pathways. Mosaic analysis indicates that egl-27 function is required...
متن کاملCell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans.
Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly,...
متن کاملP-88: Assessing Expression Changes of Some Wnt Pathway Genes During Goat Early Embryonic Development
Background: The developmental competency of embryos is affected by several factors, including the developmental pathways and their elements. In mammalian species including goat, fertilized oocyte undergoes several divisions to form a structure called blastocyst. These events depend on the successful control of temporal and spatial expression of genes involved in genome activation. One of the cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 1 شماره
صفحات -
تاریخ انتشار 1999